Это задача с двумя неизвестными и её надо решать как систему уравнений. Итак: 1. Х - количество деталей изготавливаемых Первым рабочим в 1 день 2. У Вторым рабочим за один день. 3. 8Х (дет) изготовил первый рабочий за 8 дней 4. 15Y (дет) второй рабочий за 15 дней Составим первое уравнение 8Х + 15У = 162 (детали) Надеюсь понятно?! Далее: По условию задачи сказано, что за 5 дней, то есть 5Х первый рабочий сделал на 3 детали больше. Получаем второе уравнение: 5Х - 7У = 3 Объединяем это в систему уравнений! 8Х + 15У = 162 5Х - 7У = 3 Выразим из второго уравнения Х получим 5Х = 3 + 7У, откуда Х = (3 +7У)/5 Теперь это значение Х подставим в первое уравнение системы. 8 (3 +7У)/5 + 15У = 162. Приведём к общему знаменателю и получим 56У + 24 +75У = 810 131У = 810 - 24 131У = 786 У = 6 (дет) И тогда Х = (7У +3)/5 = (42 +3)/5 = 45:5+ 9 (дет)
Проверка: 8Х = 8х9 = 72 (деталей) -1рабочий 15У= 15х6 = 90 (дет) 2 рабочий за 15 дней ОТВЕТ: 1 рабочий делал в один день 9 деталей и 72 за 8 дней 2 рабочий изготовлял за один день 6 деталей и всего сделал 90!
Найдём вершину параболы х=-4/-2=2 у=-4+8-3=1 найдём нули функции -x^2+4x-3=0 x^2-4x+3=0 х1=3 х2=1 Построим параболу вершина параболы (2;1) и две точки пересечения с осью ОХ (3;0) (1;0) Ветви параболы направлены вниз Чтобы найти промежутки знакопостоянства функции по ее графику, нужно найти промежутки значений аргумента х, при которых график функции расположен выше оси ОХ – при этих значениях аргумента х функция больше 0. найти промежутки значений аргумента х, при которых график функции расположен ниже оси ОХ – при этих значениях аргумента х функция меньше 0. На промежутке (1;3) график расположен выше оси ОХ и функция принимает положительные значения. На промежутках (от минус бесконечности до1) и (от 3 до плюс бесконечности) функция расположена ниже оси ОХ и функция принимает отрицательные значения.
y² - y⁴ = y²* (1 - y²) = (- 0,1)² * [1 - (- 0,1)²] = 0,01 * (1 - 0,01) =
= 0,01 * 0,99 = 0,0099