при любом значении b решите уравнение : (x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ; ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4. --- x²+(3b+2)x+2b² +3b+1=0 ; D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения : x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 , т.е. если b ≠ -1 и b ≠ -2,5. x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , . т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S. Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ b² +3b+2 =0 ⇒[ b = -2 ; b = -1 . 2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
У л воды во 2-й емкости
2(У + 0,25Х) = Х
3(У - 11) = Х;
2У + 0,5Х = Х
3У - 33 = Х Умножаем 1-е ур-ние на 2 и решаем систему
ур-ний методом алгебраического
сложения
*-2 | 2У - 0,5Х = 0; -4У + X = 0
3У - Х = 33; + 3У - Х = 33
-У = 33 ⇒ У = -33
Подставляем во 2-е уравнение значение У и находим Х:
Х = 3(-33) - 33 = -99 - 33 = -132
Проверка:
3(У - 11) = Х; 3(-33) - 11 = -132; -132 = - 132