Денис Кораблев отправился на велосипедную прогулку. Когда Денис проехал некоторое расстояние со средней скоростью V1 = 10 км/ч, ему позвонила мама и попросила вернуться. Развернувшись Денис ехал со скоростью V2 = 20 км/ч, но проколол шину. После попытки ликвидировать прокол Денис был вынужден оставшуюся часть пути пройти пешком. Чему равна средняя скорость движения велосипедиста на всем пути, если первую треть времени, затраченного им на вторую половину пути, он ехал, вторую треть занимался проколом и последнюю треть шел пешком со скоростью V4 = 5 км/ч?
a)
Подставим значения точек в формулу и найдём p и q:
б)
Вершину параболы(наименьшее значение, если коэффициент при x² положительный) можно найти по формуле:
найдём q подставив точку (2;-5) в функцию:
2)
График лежит выше оси абсцисс, когда отрицателен его дискриминант и коэффициент при x² положительный. У нас коэффициент положительный поэтому смотрим когда дискриминант отрицателен.
3)
Подставим все значение в квадратичную функцию, общий вид которой y=ax²+bx+c, составим систему и найдём значения коэффициентов.
{3=a·3²+b·3+c
{3=a·(-1)²+b·(-1)+c
{15=a·5²+b·5+c
↓
{3=9a+3b+c
{3=a-b+c
{15=25a+5b+c
↓от первого отнимем второе уравнение
{3-3=9a-a+3b-(-b)+c-c
{3=a-b+c
{15=25a+5b+c
↓
{0=8a+4b
{3=a-b+c
{15=25a+5b+c
↓Выражаем b и c через а
{b=-2a
{c=3-3a
{15=25a+5·(-2a)+(3-3а)
↓Отдельно решим 3 уравение
25a-10a-3a=15-3
12a=12
a=1
↓Найдём b и c из первых двух уравнений
b=-2·1=-2
c=3-3·1=0
Получаем квадратичную функцию:
y=x²-2x