1)область визначення множина дійсних чисел (симетрична відносно початку координат)
y(-x)=5(-х)²+1=5х²+1=y(x) - значить дана функція парна за означенням парної функції
2) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(-x)=(-х)⁵+3(-х)³-(-х)=-х⁵-3х³+х=-(х⁵+3х³-х)=-y(x) значить дана функція непарна за означенням непарної функції
3) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(1)=2*1⁴-1³+1=2-1+1=2
y(-1)=2*(-1)⁴-(-1)³+1=2+1+1=4
y(1)не дорівнює y(-1), значить функція не є парною
y(1) не дорівнює -y(-1), значить функція не є не парною
значить дана функція ні парна, ні непарна
4) область визначення множина дійсних чисел, за виключенням точки 0 (симетрична відносно початку координат)
y(-x)=3(-х)-2/(-х)=-3x+2/x=-(3x-2/x)=-y(x) значить дана функція непарна за означенням непарної функції
5) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(1)=4*1²+[1]=4+1=5
y(-1)=4(-1)²+[-1]=4-1=3
y(1)не дорівнює y(-1), значить функція не є парною
y(1) не дорівнює -y(-1), значить функція не є не парною
значить дана функція ні парна, ні непарна
x² + 4x + 4 = 4x + 16
x² + 4x - 4x = 16 - 4
x² = 12
x = √12
x = - √12
2) 4( x - 1)² = ( x+ 2)²
4( x² - 2x + 1) = x² + 4x + 4
4x² - 8x + 4 - x² - 4x - 4 = 0
3x² - 12x = 0
3x( x - 4) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
3x = 0
x = 0
x - 4 = 0
x = 4
3) ( 3x - 1)² = 3( 1 - 2x)
9x² - 6x + 1 = 3 - 6x
9x² - 6x + 6x = 3 - 1
9x² = 2
9x² - 2 = 0
D = b² - 4ac = 0 - 4×9×(-2) = 72
x1 = ( 0 + √72) / 18 = √9×8 / 18 = 3√8 / 18 = √8 / 6 = 2√2 / 6 = √2 / 3
x2 = - √2 / 3
ответ: +/ - √2 / 3.
4) ( x + 3)² = 3( x + 1)
x² + 6x + 9 = 3x + 3
x² + 6x - 3x + 9 - 3 = 0
x² + 3x + 6 = 0
D= b² - 4ac = 9 - 4×6 = 9 - 24 = - 15 - дискриминант отрицательный,значит,корней нет.
ответ: корней нет.