1)) Решение:
1. Обозначим: x – первое неизвестное число, y – второе неизвестное число.
2. По условию задачи была составлена система уравнений:
x^2 – y^2 = 6;
(x - 2)^2 – (y - 2)^2 = 18;
1. Преобразуем второе уравнение:
x^2 – 4x + 4 – (y^2 – 4y + 4) = 18;
x^2 – 4x + 4 – y^2 + 4y – 4 = 18;
x^2 – y^2 + 4y – 4x = 18;
Подставим первое уравнение: 6 + 4y – 4x = 18;
4y – 4x = 18 – 6;
4(y – x) = 12;
y – x = 12 / 4;
y – x = 3;
y = 3 + x;
1. Система равнений приобрела следующий вид:
y = 3 + x;
x^2 – y^2 = 6;
1. Подставим первое уравнение во второе:
x^2 – (3 + x)^2 = 6;
x^2 – (9 + 6x + x^2) = 6;
x^2 – 9 – 6x – x^2 = 6;
-6x = 6 + 9;
-6x = 15;
x = 15 / (-6);
x = -2,5;
Если x = -2,5, то y = 3 + x = 3 – 2,5 = 0,5;
Найдём сумму: -2,5 + 0,5 = -2.
ответ: сумма чисел равна -2.
Объяснение:
а)tg a = 2/3; tg^2 a = 4/9; 1 + tg^2 a = 1/cos^2 a
cos^2 a = 1 / (1 + tg^2 a) = 1 / (1 + 4/9) = 1 / (13/9) = 9/13
sin^2 a = 1 - cos^2 a = 1 - 9/13 = 4/13
sin a = √(4/13) = 2/√13 = 2√13/13
б)cos (2arccos 1/4)==2cos^2(arccos1/4)-1=2*1/16-1=1/8-1=-7/8