Первое уравнение - график окружности с центром в точке (0;0), то есть в начале координат, радиусом 3.
Второе уравнение y=x^2+p, график параболы, ветви которой направлены вверх, и которая двигается по оси Oy вверх или вниз(но не влево и вправо) в зависимости от значения p. Парабола будет иметь с графиком окружности 3 точки пересечения (а значит и система будет иметь три решения), когда вершина параболы будет лежать на окружности, а две ветви параболы будут пересекать окружность в 2 точках. Вершина параболы должно лежать в точке (0; -3) чтобы это выполнялось, а значит p=-3
Известные формулы sin a + sin b = 2sin ((a+b)/2)*cos ((a-b)/2) cos a + cos b = 2cos ((a+b)/2)*cos((a-b)/2) Подставляем в числитель sin 36 + sin 40 = 2sin ((36+40)/2)*cos ((40-36)/2) = 2sin 38*cos 2 cos 62 + cos 42 = 2cos ((62+42)/2)*cos ((62-42)/2) = 2cos 52*cos 10 Но по правилам приведения cos 52 = cos (90-38) = sin 38. Получаем числитель 2sin 38*cos 2 + 2sin 38*cos 10 = 2sin 38*(cos 2 + cos 10) = = 2sin 38*2cos((2+10)/2)*cos((10-2)/2) = 4sin 38*cos 6*cos 4 В знаменателе то же самое, поэтому вся дробь равна 1 ответ: 1
Первое уравнение - график окружности с центром в точке (0;0), то есть в начале координат, радиусом 3.
Второе уравнение y=x^2+p, график параболы, ветви которой направлены вверх, и которая двигается по оси Oy вверх или вниз(но не влево и вправо) в зависимости от значения p. Парабола будет иметь с графиком окружности 3 точки пересечения (а значит и система будет иметь три решения), когда вершина параболы будет лежать на окружности, а две ветви параболы будут пересекать окружность в 2 точках. Вершина параболы должно лежать в точке (0; -3) чтобы это выполнялось, а значит p=-3
P.S. если что-то не понятно, напишите.