М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vladik451051
Vladik451051
24.02.2021 23:02 •  Алгебра

Дам 30б. 4.Выполните действия:
а) 74 79 ; б) а7: а5 ; в) ( в2)8 г) ( ав)9 ; д) ( )8

👇
Открыть все ответы
Ответ:
BrainSto
BrainSto
24.02.2021
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Ответ:
tarasyukov
tarasyukov
24.02.2021
1) Sin x Cos y = 0,36
     Cos xSin y = 0,175    сложим:
SinxCosy + Cosx Siny = 0,535
Sin(x +y) = 0,535
x + y =  (-1)^n arcSin0,535 + nπ  аналогично:
x - y = (-1)^k arcSin0,185 + kπ, k ∈Z
2x  =  (-1)^n arcSin0,535 + nπ+ (-1)^k arcSin0,185+ kπ=
= (-1)^n arcSin0,535 + (-1)^k arcSin0,185+ mπ, m ∈Z
x =  (-1)^n·1/2· arcSin0,535 + (-1)^k·1/2· arcSin0,185+ 1/2·mπ, m ∈Z
y =(-1)^n arcSin0,535 + nπ -  (-1)^n·1/2· arcSin0,535 - (-1)^k·1/2· arcSin0,185- 1/2·mπ, m ∈Z
2)Sin x Sin y = 3/4
    tg xtg y = 3⇒ (SinxSiny)/(CosxCosy) = 3⇒ 3/4(CosxCosy) =3
⇒Cos xCosy = 1/4
теперь наша система:
Sin xSiny = 3/4
Cos xCos y = 1/4    сложим:
Сos(x - y) =1
x-y = 2πn, n ∈Z  (теперь вычтем и получим:)
Сos(х + у) = 1/2
x + y = +-√3/2 + 2πk , k ∈Z
теперь наша система:
x-y = 2πn, n ∈Z
x + y = +-√3/2 + 2πk , k ∈Z  сложим:
2х = +-√3/2 +2πm, m∈Z
x = +-√3/4 + πm , m∈Z
y = x - 2πn = +-√3/4 + πm -2πn = +-√3/4 +π(m -2n), m,n∈Z
4,7(97 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ