3.
sin²φ+2cos²φ / sin²φ-cos²φ, если tgφ = 2
Разделим числитель и знаменатель на cos²φ, получим:
sin²φ+2cos²φ / sin²φ-cos²φ = sin²φ+2cos²φ/cos²φ / sin²φ -cos²φ/cos²φ = sin²φ/cos²φ + 2cos²φ/cos²φ / sin²φ/cos²φ - cos²φ/cos²φ = tg²φ + 2/tg²φ - 1 = 2²+2/2²-1 = 4+2/4-1 = 6/3 = 2
ответ: 2
4.
sinx × cosx + cos²x + 3sin²x = 3
sinx × cosx + cos²x + 3(1-cos²x) = 3
sinx × cosx + cos²x + 3 - 3cos²x = 3
sinx × cosx + cos²x + 3 - 3cos²x - 3 = 0
sinx × cosx + cos²x - 3cos²x = 0
sinx × cosx - 2cos²x = 0
cosx × (sinx - 2cosx) = 0
cosx = 0 или sinx - 2cosx = 0
x₁ = π/2 + πn, n∈Z sinx = 2cosx | : cosx
sinx/cosx = 2cosx/cosx
tgx = 2
x₂ = arctg 2 + πn, n∈Z
ответ: x₁ = π/2 + πn, n∈Z; x₂ = arctg 2 + πn, n∈Z
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
Объяснение
Это самый метод, но зачастую – самый трудоемкий.
Идея нужно в одном из уравнений выразить одну переменную через другие, а затем полученное выражение подставить в остальные уравнения вместо этой переменной.
Затем точно так же выражаем и подставляем другую переменную и т.д., пока не получим уравнение с одной переменной.
После его решения и нахождения одной из переменных - последовательно возвращаемся к ранее выраженным, подставляя найденные значения.ние:
Объяснение:
12(t – 8) + 5t(8 – t) = 0
12(t-8)-5t(t-8)=0
(t-8)(12-5t)=0
t-8=0 , 12-5t=0
t1=8 5t=12
t2=12/5==> t2=2,4