Двузначное число, где а десятков и b единиц представим в виде 10a+b (это разложение числа по разрядам). Далее записываем условие задачи: 1) первое предложение
(10a+b):(a+b)=7(ост.3)
10a+b=7(a+b)+3
10a+b=7a+7b+3
3a-6b=3
a-2b=1 - это первое уравнение системы.
2) читаем второе предложение задачи
При перестановке цифр данного двузначного числа получим число 10b+a. Известно, что оно на 36 меньше, чем число 10a+b. Запишем это: 10a+b-36=10b+a
9a-9b=36 |:9
a-b=4 - это второе уравнение системы
Решаем систему:
Итак, искомое двузначное число равно 73.
1)] x (деталей/день) - изготовляла 1 бригада
х-8(деталей/день) - изготовляла 2 бригада.
y(дней) - время работы 1 бригады
y+1(дней) - время работы 2 бригады
Тогда:
y=240/x
y+1=240/(x-8)
240/x +1=240/(x-8)
240(x-8)+x(x-8)-240x=0
240x-1920+x^2-8x-240x=0
x^2-8x-1920=0
D=8^2+4*1920=64+7680=7744=88^2
x1=(8+88)/2=48
x2=(8-88)/2=-40 - не подходит
ответ: 48 и 40.
2)
Имеет смысл когда:
2(а+1,5)(а+4)>0 и -(a+5)(a-2)>0
a>-1,5 или a<-4 -5<a<2
-5<a<-4 и -1,5<a<2