Переделаем cos98° и cos158°в более простые выражения.
cos98°=cos(90°+8°) - так как 90° - это вертикальная ось. То косинус поменяется на синус. Так как 98° - это вторая четверть, где косинус (исходная функция!) - отрицательный, то будет отрицательной искомая функция синус. То есть получаем cos98°=-sin8°.
Переделаем cos158°=cos(180°-22°). Так как 180° - горизонтальная ось, то исходная функция остается прежней (косинусом). 158° - угол второй четверти, где косинус (исходная функция) отрицательный. Значит перед искомой функцией (косинусом) будет стоять знак - .
cos158°= -cos22°. Теперь подставим полученные значения в исходное выражение:
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым:
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 3.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=6n максимально возможное 30d+b=14 Подбираем максимальное: а=9 d=8 b=14-8=6 c=7 9678-8769=909
sin14°
Объяснение:
Переделаем cos98° и cos158°в более простые выражения.
cos98°=cos(90°+8°) - так как 90° - это вертикальная ось. То косинус поменяется на синус. Так как 98° - это вторая четверть, где косинус (исходная функция!) - отрицательный, то будет отрицательной искомая функция синус. То есть получаем cos98°=-sin8°.
Переделаем cos158°=cos(180°-22°). Так как 180° - горизонтальная ось, то исходная функция остается прежней (косинусом). 158° - угол второй четверти, где косинус (исходная функция) отрицательный. Значит перед искомой функцией (косинусом) будет стоять знак - .
cos158°= -cos22°. Теперь подставим полученные значения в исходное выражение:
Sin22°cos8°-cos158°cos98°=Sin22°cos8°-(-sin8°)*( -cos22°)=Sin22°cos8°-sin8°*cos22° (*)
Теперь разность синусов по формуле
sin(a-b)=sinacosb-sinbcosa.
Это точь-в-точь по формуле (*)
Sin22°cos8°-sin8°*cos22°=sin(22°-8°)=sin14°