М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
YaShKa111111
YaShKa111111
17.11.2020 04:26 •  Алгебра

Длина прямоугольника на 4 м больше ширины. Найдите площадь прямоугольника, если его периметр равен 55 м.

👇
Ответ:
Solari
Solari
17.11.2020

55-4=51 ширина

а площадь незнаю наверное так если нет то извини

4,5(23 оценок)
Ответ:

ответ:627,5

Объяснение: Ширина- x, тогда длина- х+4.

Р=х+х+4

55=2х+4

2х+4=55

2х=55-4

2х=51

х=51:2

х=25,5

если х=25,5 ;то х+4=4+25,5=25,9.

S=25,9×25=627,5

Вроде так, но это не точно

4,4(93 оценок)
Открыть все ответы
Ответ:
404678
404678
17.11.2020
1 cпособ. n³+m³+k³=(n³-n)+(m³-m)+(k³-k)+(n+m+k)=n(n²-1)+m(m²-1)+k(k²-1)+(n+m+k)=(n-1)n(n+1)+(m-1)m(m+1)+(k-1)k(k+1)+(n+m+k).
Т.к. произведение трех последовательных чисел делится на 6 и по условию n+m+k тоже делится на 6, то все доказано.

2 cпособ. Куб числа имеет такой же остаток при делении на 6, как и само число (это легко проверить, перебрав все числа вида 6k, 6k+1, ... 6k+5). По условию n+m+k делится на 6, т.е. сумма остатков от деления n, m, k делится на 6, а значит и сумма остатков кубов (у них те же остатки) тоже делится на 6.

Если n+m+k≡0 (mod 6), то n+m≡-k(mod 6).
Значит -k³≡(n+m)³=n³+m³+3nm(n+m)≡n³+m³-3nmk (mod 6).
Т.е. n³+m³+k³≡3nmk (mod 6).
Т.к. среди чисел n, m, k обязательно есть четное (иначе их сумма была бы нечетным числом и значит не делилась бы на 6), то 3nmk≡0 (mod 6), т.е.
n³+m³+k³≡0 (mod 6).
4,7(33 оценок)
Ответ:
natgaleeva82
natgaleeva82
17.11.2020
Так как n+m+k делится на 6, то n+m+n=6a, где a - некоторое целое число.
Тогда n = 6a-(m+k). Подставим это в выражение n³+m³+k³:
(6a-(m+k))³+m³+k³ = (6a)³-3*(6a)²(m+k)+3*(6a)(m+k)²-(m+k)³+m³+k³.
Заметим, что (6a)³-3*(6a)²(m+k)+3*(6a)(m+k)² делится на 6, так как каждое из слагаемых делится на 6. Значит, надо доказать, что -(m+k)³+m³+k³ делится на 6.
-(m+k)³+m³+k³=-m³-3m²k-3mk²-k³+m³+k³=-3mk(m+k) - делится на 3.
Докажем, что это выражение делится и на 2.
1) Если хотя бы одно из m и k делится на 2, то mk делится на 2.
2) Если m и k нечетные, то m+k делится на 2.
Таким образом, -3mk(m+k) делится на 6, а значит, n³+m³+k³ делится на 6, что и требовалось доказать.
4,4(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ