В первую очередь нарисуй рисунок. Обе линии являются параболами. Только у первой параболы "рога" направлены вниз, а у второй - вверх. Эти параболы пересекаются в 2 точках. Точки пересечения можно найти приравняв уравнения кривых друг другу: 3-x^2 = 2x^2 Получаете простое квадратное уравнение и решаете его. Находите две точки пересечения - корни уравнения х1 = а, х2 = b, (При этом а < b). Поставьте эти точки на рисунке и проведите из них вертикальные прямые к точкам пересечения парабол - х = а и х = b . А теперь сделайте так - заштрихуйте косой штриховкой фигуру, ограниченную линиями: у = 3-x^2, у = 0, х = а, х = b А теперь заштрихуйте обратной косой штриховкой фигуру, ограниченную линиями: y=2x^2, у = 0, х = а, х = b В результате эта фигура будет заштрихована в клеточку, а та фигура, площадь которой мы ищем в полосочку ( обычной косой штриховкой) . Для того, чтобы найти площадь фигуры, заштрихованной в клеточку достаточно вычислить определенный интеграл от функции (2x^2)dx в пределах от а до b. А для того, чтобы вычислить площадь фигуры, заштрихованной обоими видами штриховки, надо вычислить определенный интеграл от функции (3 - x^2)dx в пределах от a до b. Если Вы честно нарисовали рисунок, то, посмотрев на рисунок, Вы сразу догадаетесь, как найти площадь фигуры заштрихованной в полосочку, зная площади фигур заштрихованных в клеточку и обоими видами штриховки. Удачи!
13^2=x^2 +y^2(1)x1^2=25 z1 = (169 -119)/2 = 25; z2 = (169 +119)/2 = 144; D =169^2-3600*4=28561-14400=14161; sqrt(D)=119x1=5 соответственно y1=60/5 =12 Введём обозначение z=x^2, тогда уравнение станет таким: 0,5 х у =30 ответ: катеты равны 5 см и 12 см Площадь прямоугольного треугольника равна половине произведения катетов: 13^2=x^2+(60/х)^2169=x^2+3600/x^2z^2-169z+3600= 0 Решим уравнение: x1^2 = 144 x1 =12 y=60/1=15 По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов: 169x^2=x^4+3600 y = 30/(0.5x) = 60/x
приложение фото матч есть его скачай и напиши свой пример там всё можно решить