и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
К каждому из 5-ти мальчику можно поставить по одной из 4-ех девочке.
То есть и так далее...
М(1) + Д(1), М(1) + Д(2), М(1) + Д(3), М(1) + Д(4)
М(2) + Д(1), М(2) + Д(2), М(2) + Д(3), М(2) + Д(4)
М(3) + Д(1), М(3) + Д(2), М(3) + Д(3), М(3) + Д(4)
М(4) + Д(4), М(1) + Д(2), М(4) + Д(3), М(4) + Д(4)
М(5) + Д(1), М(5) + Д(2), М(5) + Д(3), М(5) + Д(4)
как видно получилась таблица с 5-ю строками и 4-ю столбцами.
ответ 5*4=20