Відповідь:
(Понятия «больше» и «меньше» наряду с понятием равенства возникли в связи со счетом предметов и необходимостью сравнивать различные величины. Понятиями неравенства пользовались уже древние греки. Архимед (III в. до н. э.), занимаясь вычислением длины окружности, установил, что «периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых».
Ряд неравенств приводит в своем знаменитом трактате «Начала» Евклид. Он, например, доказывает, что среднее геометрическое двух положительных чисел не больше их среднего арифметического и не меньше их среднего гармонического
Однако все эти рассуждения проводили словесно, опираясь в большинстве случаев на геометрическую терминологию. Современные знаки неравенств появились лишь в XVII— XVIII вв. Знаки < и > ввел английский математик Т. Гарриот (1560—1621), знаки ? и ? французский математик П. Бугер (1698—1758).)
Пояснення:
(4 - y) * 2 - y(y + 1) - раскроем скобки; чтобы умножить одночлен на многочлен, надо одночлен умножить на каждый член многочлена; при раскрытии первой скобки умножим 2 на 4 и на (- у), второй скобки - умножим (- у) на у и на 1;
8 - 2y - y^2 - y - приведем подобные; подобные - это слагаемые с одинаковой буквенной частью и чтобы их сложить надо сложить их коэффициенты и умножить на общую буквенную часть;
8 + (- 2y - y) - y^2 = - y^2 - 3y + 8;
y = - 1/9; - (- 1/9)^2 - 3 * (- 1/9) + 8 = - 1/81 + 3/9 + 8 = - 1/81 + 27/81 + 8 = 26/81 + 8 = 8 26/81.
ответ. 8 26/81.
Скорее всего выражение должно выглядеть так (4 - y)^2 - y(y + 1), и тогда первую скобку раскроем по формуле (a - b)^2 = a^2 - 2ab + b^2;
16 - 8y + y^2 - y^2 - y = 16 - 9y;
y = - 1/9; 16 - 9 * (- 1/9) = 16 + 9/9 = 16 + 1 = 17.
ответ. 17.