Эту задачу можно "расколоть" с уравнения. Составить его можно так. Пусть 1й выполнит весь заказ за x дней, тогда 2й за x-3 дней. Если принять весь объём работ за 1, то скорость работы 1-го будет: а скорость работы 2-го: Если они будут выполнять заказ совместно так, как указано в условии, то за 7 дней они выполнят часть работы: Что по условию равно всему объёму работ, т. е. 1. Итак мы получаем уравнение: Решаем его:
При x=1,5 2й должен выполнить заказ за 1,5-3=-1,5 дня, а так не бывает. Остаётся вариант x=14. Тогда 2й выполнит заказ за 14-3=11 дней.
ответ: 1й может выполнить заказ за 14 дней, 2й за 11 дней
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
а скорость работы 2-го:
Если они будут выполнять заказ совместно так, как указано в условии, то за 7 дней они выполнят часть работы:
Что по условию равно всему объёму работ, т. е. 1. Итак мы получаем уравнение:
Решаем его:
При x=1,5 2й должен выполнить заказ за 1,5-3=-1,5 дня, а так не бывает.
Остаётся вариант x=14. Тогда 2й выполнит заказ за 14-3=11 дней.
ответ: 1й может выполнить заказ за 14 дней, 2й за 11 дней