блин не получается но вот предположение: 5 корень из 3 +корень из 81 - корень из 27
28+81-27( все это под корнем)
=82 в корне
Объяснение:
Пусть точка имеет координаты . Указаны также точки , и . Требуется же найти координаты точки , притом таким образом, чтобы она была равноудалена от точек , и .
Расстояние от точки до точки будет иметь такой вид: .
Расстояние от точки до точки будет иметь такой вид: .
Расстояние от точки до точки будет иметь такой вид:
.
С этого момента допустимо оперировать квадратами расстояний вместо самих расстояний, так как от возведения обеих частей уравнений, которые мы получим позже, в квадрат получится полностью равносильное уравнение (ибо расстояние, очевидно, не может быть отрицательным).
Упростим все три выражения:
Условие же равноудалённости требует, чтобы эти три выражения были равны. Получается, что нужно решить такое уравнение:
.
Уже здесь можно видеть, что к каждой части уравнения прибавлено выражение . Можно вычесть его из каждой части:
.
Применяя аксиому транзитивности отношения равенства (), составим систему уравнений для нахождения и :
Упростим её:
Поделим первое уравнение на , а второе на :
Решим систему методом сложения:
Отсюда находим :
Обе координаты искомой точки найдены. ответом станет задаваемая ими точка:
1. при умножении степеней с одинаковыми основаниями они складываются
а) b * b^2 * b^3 = b^1+2+3 = b^6
б) 3^8 * 3^4 = 3^8+4 = 3^12
в) (-7)^3 * (-7)^6 * (-7)^9 = (-7)^3+6+9 = (-7)^18
г) x^m * x^2 * x^m = x^2+m+m = x^2+2m
2. а) 5 * 2^3 - 3^2 = 5 * 8 - 9 = 40 - 9 = 31
б) (-1)^3 - 1^2 = -1 - 1 = -2
в) 3^8/3^6*9
выразим 9 как 3^2 и посчитаем
3^8/3^6*3^2 = 3^8/3^8 = 1
г) 6^12/36*6^9
выразим 36 как 6^2 и посчитаем
6^12/6^2*6^9 = 6^12/6^11 = 6^1 = 6
3. а) -4^2 * 1/24 + (2/3)^0
любое число,возведённое в 0 степень,равно 1
-16 * 1/24 + 1 = - 16/24 + 1 = -2/3 + 1 = 1/3
б) (8/9)^0 - 8^2 * 1/72
любое число,возведённое в 0 степень,равно 1
1 - 64 * 1/72 = 1 - 64/72 = 1 - 8/9 = 1/9
фывапролдждлорпавыффывапрол