Объяснение:
Уравнение касательной имеет вид:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
Дана функция:
f(x)=-x^2-4x+2f(x)=−x
2
−4x+2
Найдём значение функции в точке x₀:
f(x_0)=f(-1)=-(-1)^2-4 \cdot (-1)+2=-1+4+2=5f(x
0
)=f(−1)=−(−1)
2
−4⋅(−1)+2=−1+4+2=5
Найдём производную функции:
f'(x)=-2x^{2-1}-4=-2x-4f
′
(x)=−2x
2−1
−4=−2x−4
Найдём производную функции в точке x₀:
f'(x_0)=f'(-1)=-2 \cdot (-1) -4 =2-4=-2f
′
(x
0
)=f
′
(−1)=−2⋅(−1)−4=2−4=−2
Подставим найденные значения, чтобы найти уравнение касательной:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
y=5+(-2)(x-(-1))y=5+(−2)(x−(−1))
y=5-2(x+1)y=5−2(x+1)
y=5-2x-2y=5−2x−2
\boxed{y=-2x+3}
y=−2x+3
ответ: y=-2x+3 - искомое уравнение.
а) х2+5х-14=(х-2)(х+7);
х2+5х-14=0;
д=25-4*(-14)=25+56=81;
х1=(-5+9)/2=4/2=2;
х2=(-5-9)/2=-14/2=-7;
б)16х2-14х+3=16(х-0,5)(х-0,375);
16х2-14х+3=0
д=(-14)2-4*16*3=196-192=4;
х1=(14+2)/32=16/32=0,5;
х2=(14-2)/32=12/32=0,375;
в)(3у2-7у-6)/(4-9у2)=3(у-3)(у+2/3)/-9(у-2/3)(у+2/3)=3(у-3)/(6-9у)=
(3у-9)/(6-9у)=3(у-3)/3(2-3у)=(у-3)/(2-3у);
3у2-7у-6=(у-3)(у+2/3);
3у2-7у-6=0
д=49-4*3*(-6)=49+72=121;
у1=(7+11)/6=18/6=3;
у2=(7-11)/6=-4/6=-2/3;
4-9у2=-9(у-2/3)(у+2/3);
4-9у2=0
9у2=4
у1=4/9=2/3;
у2=-2/3.