Уравнение любой касательной к любому графику находится по формуле:
Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
Квадратные уравнения ВИДА ax^2+bx+c=0 решаются так: вам нужно найти дискрименант. Он находится по формуле b^2-4*a*c В нашем уравнении b=6, a=-1, c=-8 В таком случае D(дискр.)= 36-32=4. Если D положителен, ур-е имеет 2 корня, если равен 0, то один корень, если отрицателен, не имеет корней вообще. Дальше применяем формулу: X1=(-b+корень из D)/2*a X2=(-b-корень из D)/2*a Я просто подставил вместо переменных ваши значения и получил результат
Где производная функции в данной точке. А точка касания по иксу.
1)
Поначалу у функции мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
- где n это степень.
В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2)
Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы.
Если что-то не правильно, то это значит что вы не правильно написали условие.