Будем считать, что задано уравнение: 4 – 5cos7x – 2sin²7x = 0.
Заменим 2sin²7x = 2(1 - cos²7x):
4 – 5cos7x – 2(1 - cos²7x) = 0. Заменим cos7x = t и получим квадратное уравнение: 2 - 5t + 2t² = 0.
Квадратное уравнение, решаем относительно t:
Ищем дискриминант:
D=(-5)^2-4*2*2=25-4*2*2=25-8*2=25-16=9;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(√9-(-5))/(2*2)=(3-(-5))/(2*2)=(3+5)/(2*2)=8/(2*2)=8/4=2 (нет по ОДЗ;
t_2=(-√9-(-5))/(2*2)=(-3-(-5))/(2*2)=(-3+5)/(2*2)=2/(2*2)=2/4=1/2.
Обратная замена: cos7x = 1/2.
7х = 2πk +- (π/3), k ∈ Z.
ответ: х = (2/7)πk +- (π/21), k ∈ Z.
. Далее откидываем от вновь получившегося числа ещё одну цифру(то есть стремимся, чтоб число состояло из двух цифр, ибо нужно узнать две последние цифры), получаем 21.
. Проделываем ту же операцию ещё несколько раз:
... Наблюдаем закономерность: который раз мы умножаем получившееся число на 11, такая цифра и будет второй с конца(2011 * 2011 = ...21; ...21 * 2011 = ...31; ...31 * 2011 = ...41; и т.д., притом после накрутки первого десятка вторая цифра онулируется и всё по новой...), а первая с конца всегда единица. Таким образом,
, а
.
берем вариантами на 1 место 9 вариантов без ноля на второе 9 вариантов с нулем на 3 место 8 вариантов на 4 место 7 вариантов а на пятое 6 вариантов
9*9*8*7*6=27276
ответ 27216