М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anton280605
anton280605
28.01.2022 07:20 •  Алгебра

Дана функция y= корень x а) график функции проходит через точку (а;9). Найдите значение а


Дана функция y= корень x а) график функции проходит через точку (а;9). Найдите значение а

👇
Ответ:
sanyashoydokov
sanyashoydokov
28.01.2022

В решении.

Объяснение:

Дана функция у=√х:  

а) График которой проходит через точку с координатами А(а; 9). Найдите значение а.  

Нужно в уравнение подставить известные значения х и у (координаты точки А):  

9 = √а  

(9)² = (√а)²    

а=81;

b) Если х∈[0; 8], то какие значения будет принимать данная функция?  

у= √х  

у=√0=0;  

у=√8=√4*2=2√2;  

При х∈ [0; 8]   у∈ [0; 2√2].  

с) y∈ [4; 121]. Найдите значение аргумента.  

4 = √х  

(4)² = (√х)²  

х=16;  

121 = √х  

(121)² = (√х)²  

х=14641;  

При х∈ [16; 14641]   y∈ [4; 121].  

4,7(42 оценок)
Открыть все ответы
Ответ:
ричбич4
ричбич4
28.01.2022
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
4,5(9 оценок)
Ответ:
vadimash
vadimash
28.01.2022
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
4,4(52 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ