1)а_n=3n-15
2)a_n+1=a_n+n+1
3)a_n=200n-185
Объяснение:
1.
Последовательность являет
ся арифметической прогрес
сией:
а_n=а_1+d(n-1)
По условию а_1=-12
d=a_2-a_1=(-9)-(-12)=
=-9+12=3
Подставляем а_1 и d
вформулу для а_n :
a_n=-12+3(n-1)=
=-12+3n-3=
=3n-15
Рекурентная формула
a_n=-13+3n-3
2.
Закономерность:
Каждый член последователь
ности получен прибавлением
к предыдущему номера после
дующего члена:
a_n+1=a_n+(n+1)=a_n+n+1
3.
Последовательность являет
ся арифметической прогрес
сией:
а_1=15
d=a_2-a_1=215-15=200
a_n=a_1+d(n-1)
a_n=15+200(n-1)=
=15+200n-200=200n-185
Рекурентная формула
a_n=200n-185.
Будет сыграно С (2,18)*2=18*17/2*2=306 матчей.
В одном из предыдущих ответов не учтено, что в каждом матче участвуют ДВЕ команды, поэтому, если бы проводилось по одному матчу, то матчей было бы 18*17/2=153=(С (2,18), а поскольку они проводят по 2 матча - то в два раза больше. Элементарная задача на комбинаторику. А те ответы, где написано полная чушь.
Примечание: С (2,18) - так обозначается в комбинаторике число комбинаций при выборе двух элементов из 18 возможных. Оно равно 18!/(2!*(18-2)!)=18!/(2!*16!)=18*17/(2*1)=18*17/2=153
Объяснение:
y=(1/3)*cos(3x)
y’ = (1/3)*(-sin(3x)*3=-sin(3x)
y’=0
-sin(3x)=0
sin(3x)=0
3x=pi*n
x=pi*n/3
на промежутке [0;п/2] находятся корни 0 и pi/3
при x=0- функция принимает максимум
при x=pi/3 – функция принимает минимум