Можно доказать, что гмт точек, лежащих на равном удалении от концов данного отрезка AB, - серединный перпендикуляр. Д-во в одну сторону: рассмотрим серединный перпендикуляр. Возьмем на нем любую точку X. В треугольнике AXB совпадают медиана и высота, тогда он равнобедренный, и XA = XB. В другую сторону: пусть нашлась точка X, равноудалённая от концов отрезка и не лежащая на серединном перпендикуляре. Опустим перпендикуляр из точки Х. По условию треугольник равнобедренный, так что основание перпендикуляра - середина AB. Имеем две несовпадающие высоты, проходящие через одну точку. Противоречие.
Итак, все точки, равноудалённые от концов отрезка, лежат на серединном перпендикуляре (на деле, мы доказали даже чуть больше). Так как через две точки можно провести ровно одну прямую, то через две точки M и N, лежащие на серединном перпендикуляре, проходит только серединный перпендикуляр.
Сложение рациональных чисел обладает переместительным и сочетательным свойствами. Иными словами, если а , b и c — любые рациональные числа, то а + b = b + а , а + (b + с) = (а + b) + с .
Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю. Значит, для любого рационального числа имеем: а + 0 = а , а + (– а) = 0 .
Умножение рациональных чисел обладает переместительным и сочетательным свойствами. Если, а , b и c рациональные числа, то:
ab = ba , a(bc) = (ab)c . Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1 . Значит, для любого рационального числа а имеем:
а • 1 = а ;
Умножение числа на нуль дает в произведении нуль, т. е. для любого рационального числа а имеем:
а • 0 = 0 ; Произведение может быть равно нулю лишь в том случае, когда хотя бы один из множителей равен нулю:
если а • b = 0 , то либо а = 0 , либо b = 0 (может случиться, что и а = 0 , и b = 0 ) . Умножение рациональных чисел обладает и распределительным свойством относительно сложения. Другими словами, для любых рациональных чисел а , b и c имеем:
1)
Объяснение:
x² - 36 > 0
(x - 6)(x + 6) > 0
x > 6 или x < -6
соответствует 1)