М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NextHelp
NextHelp
30.09.2020 07:04 •  Алгебра

Найдите период и множество значений функции: f(x)=3-cos²2x + sin²2x

👇
Ответ:
123lego123den
123lego123den
30.09.2020

Надеюсь все будет понятно, если будут вопросы, спрашивай;)


Найдите период и множество значений функции: f(x)=3-cos²2x + sin²2x
4,7(89 оценок)
Открыть все ответы
Ответ:
Kotliarrostislav
Kotliarrostislav
30.09.2020

См. рисунок

1. Правильный шестиугольник, состоит из шести равносторонних треугольников.

Найдем сторону шестиугольника AB=r=48/6=8м.

Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD

По теореме Пифагора найдем  СD

r²=CD²+DO²=2CD² ⇒ r=CD√2⇒CD=\frac{r}{\sqrt{2} }= \frac{8}{\sqrt{2}} м

a=2*\frac{8}{\sqrt{2}}=8\sqrt{2} м

2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.

Площадь правильного шестиугольника равна

S=\frac{3\sqrt{3}r^{2}}{2}

r=\sqrt{\frac{2S}{3\sqrt{3}}}=\sqrt{\frac{2*72\sqrt{3}}{3\sqrt{3}}}=\sqrt{48}=4 \sqrt{3} см

Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см

3.  Площадь сектора равна

S=\pi r^{2} *\frac{n}{360}= \pi 12^{2} \frac{120}{360} =\pi \frac{144}{3}≈151 см²

(где n - градусная мера дуги сектора)


1) периметр правильного шестиугольника вписанного в окружность,равен 48м. найди сторону квадрата,впи
4,4(77 оценок)
Ответ:
oolesyoooolesy
oolesyoooolesy
30.09.2020

y₁ = x² - 4x + 3; y₂ = x - 1

исследуем функцию y₁ = x² - 4x + 3

Нули функции:

x² - 4x + 3 = 0

D = 16 - 12 = 4

√D = 2

x₁ = (4 - 2):2 = 1

x₂ = (4 + 2):2 = 3

Вершина параболы: х = 4/2 = 2

у(2) = 4 - 4·2 + 3 = -1

Для определения пределов интегрирования найдёи точки пересечения функций

y₁ = x² - 4x + 3 и y₂ = x - 1

x² - 4x + 3 = х - 1

x² - 5x + 4 = 0

D = 25 - 16 = 9

√D = 3

x₁ = (5 - 3):2 = 1

x₂ = (5 + 3):2 = 4

Итак, нижний предел интегрирования x₁ = 1, верхний - x₂ = 4

Поскольку на интервале х∈(1,4) у₂ > у₁, то будем находить интеграл от разности

у₂ - у₁ = x - 1 - (x² - 4x + 3) = x - 1- x² + 4x - 3 = - x² + 5x - 4

∫(- x² + 5x - 4)dx = -x³/3 + 5x²/2 - 4x

Подставим пределы интегрирования

S = (-64/3 + 5·16/2 - 4·4) - (-1/3 + 5/2 - 4) = -64/3 + 40 - 16 +1/3 - 5/2 + 4 =

= - 21 + 28 - 2,5 = 4,5

4,6(49 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ