JK=0,6
Объяснение:
вроде так
Обозначим количество строк, в которых закрашена 1 клетка через a, а количество строк, в которых закрашены 7 клеток через b.
Обозначим количество столбцов, в которых закрашены 3 клетки через c, а количество столбцов, в которых закрашены 4 клетки через d.
Общее количество закрашенных красок N может быть выражено двояко:
N = a + 7b = 3c + 4d
Нам нужно найти min(N)
Имеются следующие ограничения и соотношения на a, b, c и d
a, b, c, d ∈ Z, 0 ≤ a,b,c,d ≤ 130, a + b = 130, c + d = 130
Подставим эти соотношения в равенство для N:
a + 7b = 3c + 4d
(a + b) + 6b = 3(c + d) + d
130 + 6b = 3 * 130 + d
d = 6b - 260
Т.к. 0 ≤ d ≤ 130, то:
0 ≤ 6b - 260 ≤ 130
260 ≤ 6b ≤ 390
43.(3) ≤ b ≤ 65
Т.к. нам нужно найти min(N) = min(a + 7b) = min(130 + 6b), то минимум достигается при минимальном b = 44.
Осталось построить пример, показывающий, что возможна раскраска квадрата 130*130 так, что у него будет раскрашено по 7 клеток в 44 строках, по одной клетке в 86 (130 - 44) строках, по 4 клетки в 4 столбцах (6 * 44 - 260) и по 3 клетки в 126 столбцах (130 - 4), а всего 394 клетки (86 + 7 * 44).
Схема заполнения квадрата показана на рис.1 - будут заполнены только прямоугольники, размеры и расположение которых указаны.
Прямоугольник А будет заполнен так, как указано на рис.2 - 14 блоков каждый размера 3 * 7.
Прямоугольник Б будет заполнен так, как указано на рис.3 - 25 блоков каждый размера 3 * 1.
И наконец прямоугольник В заполнен так, как указано на рис. 3
1) (х+3)⁴ - 13(х+3)² + 36 = 0
проведемо заміну (х+3)² = t
t² - 13t + 36 = 0
знайдемо дискримінат D=169-144=25
√D = √25 = 5
t1=(13+5)/2=18/2=9
t2=(13-5)/2=8/2=4
проведемо зворотню заміну
(х+3)²=9
х²+6х+9=9
х²+6х=0
х(х+6)=0
х=0
х=0х=-6
(х+3)²=4
х²+6х+9=4
х²+6х+5=0
D=36-20=16
√D = √16 = 4
x1=(-6+4)/2=-1
x2=(-6-4)/2=-5
x1=-6, x2=-5, x3=-1, x4=0
2) (x²-9)² - 8(x²-9) + 7 = 0
проведемо заміну (х²-9) = t
t²-8t+7=0
D=64-28=36
√D = √36 = 6
t1=(8+6)/2=7
t2=(8-6)/2=1
проведемо зворотню заміну
х²-9=7
х²=16
х=±4
х²-9=1
х²=10
х=±√10
х1=-4, х2=-√10, х3=√10, х4=4
3) (2х²+3х)² -7(2х²+3х) + 10=0
проведемо заміну (2х²+3х) = t
t²-7t+10=0
D=49-40=9
√9 = 3
t1=(7+3)/2=5
t2=(7-3)/2=2
проведемо зворотню заміну
2х²+3х=5
2х²+3х-5=0
D=9+40=49
√49 = 7
x1=(-3+7)/4=1
x2=(-3-7)/4=-10/4=-5/2=-2,5
2x²+3x=2
2x²+3x-2=0
D=9+16=25
√25 = 5
x1=(-3+5)/4=2/4=1/2=0,5
x2=(-3-5)/4=-8/4=-2
x1=-2,5, x2=-2, x3=0,5, x4=1
ВІДПОВІДЬ:1) x1=-6, x2=-5, x3=-1, x4=0
2) х1=-4, х2=-√10, х3=√10, х4=4
3) x1=-2,5, x2=-2, x3=0,5, x4=1
JK=3/5
JK=0,6