Рисуешь числовую окружность радиусом, равным 1 и на оси х отмечаешь точку с координатой 0,5 через эту точку проводишь вертикальную линию вверх до пересечения с окружностью. Автоматически получаешь точку с у-координатой √3/2.
Теперь давай посчитаем, какому углу она соответствует.
Если разделить верхнюю половину окружности на 3 части, то твоя точка как раз совпадёт с 1/3 полуокружности. Поскольку полуокружность соответсвует углу, равному π(180 градусов), то твоя точка соответствует π/3 (60°).
Это если отсчитывать от оси х в положительную сторону (против часовой стрелки).
А если отсчитывать в отрицательную сторону (по часовой стрелке, то мы пройдём 1/2 окружности и ещё 2/3 её. Половина окружности (я уже говорила) соответствует π, а 2/3 соответствует 2π/3, и всё это со знаком "-"!!
Всего получается -π- 2π/3 = -5π/3 (-300°)
ответ: наименьший положительный угол π/3 (60°)
наибольший отрицательный угол -5π/3 (-300°)
28x^2+bx+15=-5x+8
28x^2+(b+5)x+7=0
раз точка касания единственная, значит дескриминант должен равен нулю
D=b^2+10b-759 =0
решаем получаем 2 корня b1=-33, b2=23
подставляем в уравнение графика y1=28x^2-33x+15
и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем
-5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая
-5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Значит ответ в=-33. Конец