ДОБАВИТЬ В ИЗБРАННОЕ
Урок по теме: «Функция у=kx и её график»
Цель – систематизировать знания по изученной теме; развивать умения находить значение функции по заданному значению аргумента, значение аргумента, если задана функция.
Ход урока:
1.Актуализация знаний.
Повторить определение функции, аргумента задания функции, понятие графика функции.
2. Устная работа.
1) Функция задана формулой у=5х-4. Закончите решение:
у(2)=5·2-4=…
у(3)=5·3-4=…
у(4)=…
2) Функция задана формулой у=-3х+2.Найдите значение аргумента, при котором у=13.
Подставим вместо у число 13 и получим 13=-3х+2.Доделайте задание.
3) Функция задана формулой у= 2х. Заполните таблицу:
3. Новый материал.
1) Построим график функции у=3х.
а) Заполните таблицу:
б) Задайте координатную плоскость и изобразите на ней полученные координаты.
в) Проведите через полученные точки линию.
г) Какая фигура получилась в результате построения? Пересекает ли она оси координат? А через что она проходит? Сколько можно задать точек для построения графика функции?
2) Выводы запишите самостоятельно (графиком функции у=кх является прямая, которая проходит через начало координат; для построения графика функции у=кх достаточно двух точек).
3) Исследовательская работа: Влияние коэффициента пропорциональности k на расположение графика функции в координатной плоскости.
y=kx
к>0
у=2·х
к=0
у=0·х
к<0
у=-2·х

Запишите выводы.
4. Закрепление умений и навыков:
Учебник Колягина и др. №558,559.
5. Обобщение по теме и подведение итогов.
6. Домашнее задание: №560.
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
A √32 B √7 c √18
Объяснение:
надеюсь