Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
√(15 - 3x) - x = 1
• Перенесём переменную икс вправо, при этом изменив знак:
√(15 - 3x) = 1 + x
• Возведём обе части в квадрат, но при этом напишем область определения:
[ √(15 - 3x) ≥ 0
[ 1 + x ≥ 0
Решив систему, получаем:
[ x ≤ 5
[ x ≥ -1
D ( ƒ ) = [ -1 ; 5 ]
• После возведения в квадрат, мы получили уравнение следующего типа:
15 - 3x = (1 + x)²
• Перенесём обе части уравнения влево, а после упростим:
15 - 3x - (1 + x)² = 0
15 - 3x - 1 - 2x - x² = 0
-x² - 5x + 14 = 0 / • (-1)
x² + 5x - 14 = 0
По теореме, обратной теореме Виета получаем следующие корни:
x₁ = -7 и x₂ = 2
• Следуя из области определения, получаем, что x₁ = -7 - не подходит по условию, ⇒
ответ: x = 2
ответ: x=2.
Уравнение касательной в точке с абсцисской -1 имеет вид y=-6x-1