Задание №1
а). (сокращаем на "13
y")
ответ:
б). (в знаменателе выносим "y" и сокращаем с "y" в числителе)
ответ:
в). (раскрываем числитель по формуле разности квадратов
, в знаменателе выносим "3")
ответ:
Задание №2
а). (одинаковый знаменатель, значит можно складывать)
ответ:
б). (знаменатели разные, чтобы сложить приводим к общему знаменателю. Первую дробь умножаем на 4, вторую умножаем на 5, после чего складываем)
ответ:
в). (принцип тот же. "а" есть и там, и там в знаменателе, значит первую дробь умножаем на 3, вторую умножаем на 2, чтобы получить общий знаменатель, после чего вычитаем)
ответ:
г). (знаменатель одинаковый - складываем)
ответ: 2
Задание №3
а). (умножаем первую дробь на a, а вторую умножаем на 2, после чего вычитаем дроби)
ответ:
б). (первую дробь умножаем на знаменатель второй дроби, а вторую дробь умножаем на знаменатель первой дроби, после чего вычитаем)
(ещё можно свернуть по формуле разности квадратов
)
ответ:
в). (вынесем "b" в знаменателе второй дроби за скобку и умножим первую дробь на "b", после чего вычитаем)
ответ:
Задание №4
(приведем к общему знаменателю умножив
на "2y", после чего сложим)
(теперь подставляем x = -8 и y = 0,1. Десятичное число 0,2 = дроби
. Когда получилась трёхэтажная дробь, то знаменатель дроби в знаменателе переносится в числитель и умножается на числитель общей дроби, а знаменатель становится числитель дроби в знаменателе)
ответ: -40
Задание №5
(знаменатель средней дроби раскроем по формуле разности квадратов
.
Первую дробь умножим на "х" и на "x+4", среднюю дробь умножим на "х", а третью дробь умножим на "x+4" и на "x-4", после чего посчитаем)
ответ:
ОДЗ: x+1≠0 => x≠-1
D(f)=x∈(-∞;-1)∪(-1;+∞)
2. y=2x²-2х-3 (График №2)
а) промежуток возрастания:(-∞;0.5)
промежуток убывания:(0.5;+∞)
(f`(x)=4x-2; x=0.5 - экстремум)
б) наименьшее значение функции: y=-3
в) y<0 при -1<х<2
3. -х²-2х+8=0
f(x)=-x^2-2x+8 (График №3)
x₁=-4
x₂=2
4. {y=-√х+3 (График №4)
{y=|x-3|
ОДЗ: x≥0
x₁=0; y₁=3
x₂=1; y₂=2
x₃=4; y₃=1
5.y=х²+px-24
Точка (4;0) принадлежит данной параболе
0=4²+р*4-24
16+4p-24=0
4p=8
p=2
f(x)=x²+2x-24 (График №5)
ось симметрии проходит через вершину параболы,
координаты вершины параболы:
x₀=-b/2a
-2/2*1=-1
y₀=-D/4a
D=2²-4*1*(-24)=100
-100/4*1=-25
Координаты вершины (-1;-25)
Уравнение оси симметриии параболы: х=-1