d = 8/5
Объяснение:
5x^2-6x+d=0
Пусть
x_1 = 2x_2, где
x_1 - первый корень квадратного уравнения
x_2 - второй корень квадратного уравнения,
тогда по теореме Виета (дла случая а≠1) запишем систему:
(x_2)*(2x_2)= d/5;
x_2+2x_2= 6/5;
решаем:
2*(x_2)^2=d/5;
3x_2=6/5;
далее:
2(x_2)^2=d/5;
x_2=6/(5*3) = 2/5;
подставим в первое уравнение
2*((2/5)^2)=d/5;
d/5= 2*4/25=8/25;
d/5=8/25;
d=40/25=8/5
Проверка:
5x^2-6x+8/5=0
D=6^2-4*5*8/5=36-32=4;
x_12=1/10*(6±√(4));
x_1= 8/10; x_2=4/10
x_1/x_2=(8/10)/(4/10)=2 как в условии!
x_1*x_2=8/10*4/10=32/100=8/25=d/5 - правильно
x_1+x_2=4/10+8/10=12/10=6/5=-(-6)/5 - верно!
a)y=1,2x-6
Если график функции пересекается с осью Ох, то координата у=0, вот и подставляем в функцию вместо у=0 и находим х.
0= 1,2x-6
1,2x=6
х=5 получается точка (5,0)
Если график функции пересекается с осью Оу, то координата х=0, вот и подставляем в функцию вместо х=0 и находим у
. y=1,2*0-6
у=-6 получается точка (0,-6)
b)y=-1/4x+2 Делаем аналогично
С осью Ох: у=0
0=-1/4x+2
1/4x=2
х=8 (8,0)
С осью Оу: х=0
у=-1/4*0+2
у=2 (0,2)
c)y=2,7x+3
С осью Ох: у=0
0=2,7x+3
2,7x=-3
х=1 1/9 ( это одна целая одна девятая) ( 1 1/9, 0)
С осью Оу: х=0
y=2,7*0+3
у=3 (0,3)