Первый рабочий за 3 дня сделал x деталей, по x/3 в день.
Второй рабочий за 4 дня сделал (x+22) деталей, по (x+22)/4 в день.
Первый работал 8 дней, второй работал 11 дней. Вдвоем они сделали
8x/3 + 11(x+22)/4 = 678 деталей.
Умножаем все на 12
32x + 33(x+22) = 678*12
65x + 121*6 = 678*2*6
65x = 6*(1356 - 121) = 6*1235
x=6*1235/65=6*19=114 деталей сделал 1 рабочий за 3 дня, по 38 в день.
x + 22 = 114 + 22 = 136 деталей сделал 2 рабочий за 4 дня, по 34 в день.
ответ: 1 - 38 в день, 304 за 8 дней, 2 - 34 в день, 374 за 11 дней.
Первый проще взять по частям, нафиг тут подстановка.
u = x du = dx;
dv = cos³xdx v = ∫cos²x d(sinx) = ∫1-sin²xd(sinx) = sinx - sin³x/3;
∫ = uv - ∫vdu = x[sinx - sin³x/3] - ∫sinx - sin³x/3 dx.
Вычисляем второй интеграл.
∫sinx dx = -cosx;
∫sin³x/3 dx = -(1/3)∫sin²x d(cosx) = -(1/3)∫1-cos²xd(cosx) = -(1/3) [cosx - cos³x/3]
Все, дальше думай головой :))
А второй - да, проще подставить. lnx = t x=e^t; dx = e^tdt
∫t*e^tdt - а теперь по частям по той же схеме. Получится x*lnx - x
Константы везде выкинул, но не забывай о них ))
решение на фотографии