Объяснение:
Сначала найдём вероятность обратного события, а именно "обе извлечённые детали — не стандартны".
Всего нестандартных деталей 10 - 8 = 2 штуки. Соответственно, есть только один извлечь именно их.
Всего же извлечь две детали из 10 будет 10!/(2!(10-2)!) = 10!/(2!8!) = 10*9/2 = 45.
Таким образом, вероятность события "обе извлечённые детали — не стандартны" составляет 1/45.
Тогда вероятность искомого события равна 1 - 1/45 = 44/45.
ответ: вероятность того, что среди наудачу извлечённых двух деталей будет хотя бы одна стандартная, составляет 44/45.
cos²α = 1 - sin²α
cos²α = 1 - 576/625
cos²α = 49/625, cosα= -7/25 (перед дробью знак минус, т.к. α∈(π;3π/2) , а косинус в этом промежутке отрицательный)
2. sin (3π/2 - 2x) = sinx, (3π/2 ; 5π/2)
Применяем формулы приведения, и получаем:
-cos2x = sinx |:(-1)
cos2x = -sinx
cos²x-sin²x = -sinx
cos²x-sin²x+sinx = 0
1 - sin²x - sin²x + sinx = 0
-2sin²x + sinx + 1 =0
Делаем замену: sinx=a
-2a² + a + 1 = 0
D = 9, √D = 3
a1 = 1, a2 = - 1/2
sinx = 1 sinx = -1/2
x = π/2 + 2πn x = (-1)^n arcsin(-1/2) + πn
x=(-1)^n+1 π/6 + πn
Перебираем корни:
n=0 n=1 n=2
x=π/2 - не подходит x=5π/2 - подходит x=9π/2 - не подходит
x=-π/6 - не подходит x=7π/6 - не подходит x=11π/6 - подходит
n=3
x=13π/2 - не подходит
x=19π/6 - не подходит.
Дальше корни будут больше, и не войдут в промежуток. Значит, только 2 корня