Надо максимизировать выражение S/t (это, если я все понял правильно, и есть скорость в данной точке). 1)(t^3 + 2t^2 + 5t +8)/t =t^2 + 2t + 5 + 8/t. Чтобы найти максимум данной функции, обратимся к ее производной и найдем точки, в которых она равна 0 либо не существует вообще. Назовем эту функцию f(t). f’(t)=2t+2 - 8/t^2. f’(t)=0. -8/t^2 +2t+2=0 -4/t^2 +t+1=0(домножим на t^2, t=0 не является корнем) t^3+t^2-4=0. А вот здесь я уже сам запутался, как решить это уравнение, но интернет говорит о том, что ответ здесь примерно 1,31. Также нужно еще подумать, что будет с производной при значении t=0. По крайней мере, я навел на правильный мысли, хоть и не решил до конца)
Надо максимизировать выражение S/t (это, если я все понял правильно, и есть скорость в данной точке). 1)(t^3 + 2t^2 + 5t +8)/t =t^2 + 2t + 5 + 8/t. Чтобы найти максимум данной функции, обратимся к ее производной и найдем точки, в которых она равна 0 либо не существует вообще. Назовем эту функцию f(t). f’(t)=2t+2 - 8/t^2. f’(t)=0. -8/t^2 +2t+2=0 -4/t^2 +t+1=0(домножим на t^2, t=0 не является корнем) t^3+t^2-4=0. А вот здесь я уже сам запутался, как решить это уравнение, но интернет говорит о том, что ответ здесь примерно 1,31. Также нужно еще подумать, что будет с производной при значении t=0. По крайней мере, я навел на правильный мысли, хоть и не решил до конца)
b^2=a^2+c^2-2*a*c*CosB
CosB=(b^2-a^2-c^2)/(-2*a*c)
CosB=(102-102-4*19)/(-2*10*2*√19)
CosB=(-76)/(-174)
CosB=0,4359
B=64 - угол B
Внешний угол B'=116
Sin116=0,8988