1) Оценим сумму , для этого примем что есть равные числа. Так как есть место для чисел 3 4 и 6 это 3 числа. то есть да может , так как ее целая часть равна 3 , а она натуральное число , и найдется набор таких чисел что среднее арифметическое будет меньше 2 , так как в условий не сказано что , сам набор может состоят так только из разных натуральных чисел. 2) , целая часть этого числа равна , то есть не может , так как в сумме , и по количеству в этом наборе минимальное есть 16 единиц . 3) так как мы ранее доказали что , есть не менее 16 единиц , и того что удовлетворяет условию .
Пусть x (кг) - масса первого сплава, y (кг) - масса второго сплава. Тогда масса третьего сплава равна
x+y = 200. (уравнение 1)
В первом сплаве содержится 10 % никеля, т.е. 0,1x (кг) никеля, а во втором сплаве - 30% никеля, т.е. 0,3y (кг) никеля. Третий сплав содержит 25% никеля, т.е. 0,25*200 = 50 (кг) никеля. Получаем уравнение:
0,1x+0,3y = 50.
Умножим последнее уравнение на 10, получим:
x+3y = 500. (уравнение 2)
Вычтем из уравнения 2 уравнение 1:
x+3y - (x+y) = 500 - 200,
2y = 300,
y = 150,
x = 200 - 150 = 50.
Тогда y-x = 150 - 50 = 100 (кг), т.е. масса первого сплава меньше массы второго сплава на 100 кг.
2)
3)