Построение графика линейной функции: ты берешь два каких-либо икса, , подставляешь их в формулу, находишь соответствующие игреки.
Затем отмечаешь эти две точки на координатной плоскости, прикладываешь линейку, и график готов. Просто и быстро, и ничего выдумывать не надо.
Но бывает, что функция задана по-другому, например, неявно. Сейчас разберем, как быстро справляться с такими ситуациями.
Разберем пример:
Постройте график уравнения 2y+3x=6\displaystyle 2y+3x=62y+3x=6.
Ну а что тут сложного? Чтобы произвести построение графика линейной функции выражаем y и строим по точкам. Это да, но можно сделать проще и интересней.
Выясним, в какой точке эта прямая будет пересекать ось Ox\displaystyle OxOx. Что характерно для этой точке? Правильно, y=0\displaystyle y=0y=0. Так и пишем:
2⋅0+3x=6 ⇒ x=2\displaystyle 2\cdot 0+3x=6\text{ }\Rightarrow \text{ }x=22⋅0+3x=6 ⇒ x=2
А теперь проделаем то же самое с другой осью: в какой точке график пересекает ось Oy\displaystyle OyOy?
x=0 ⇒ 2y+3⋅0=6 ⇒ y=3\displaystyle x=0\text{ }\Rightarrow \text{ }2y+3\cdot 0=6\text{ }\Rightarrow \text{ }y=3x=0 ⇒ 2y+3⋅0=6 ⇒ y=3
Вот и они – две точки графика. Осталось только приложить линейку:
Материальные точки при прямолинейном движении встретятся, когда их координаты будут равны.
х₁ = x₂ ⇒ 0,6 + 4t = 0,5 + 0,4t
4t - 0,4t = 0,5 - 0,6
3,6 t = -0,1 ⇒ t < 0
Так как время не может быть отрицательным числом, то эти точки никогда не встретятся. Этот вывод можно было сделать, рассмотрев уравнения движения материальных точек. У первой точки начальная координата (0,6) больше начальной координаты второй точки (0,5). И скорость первой точки (4) больше скорости второй точки (0,4), поэтому первая точка, изначально находясь впереди второй и двигаясь с большей скоростью, будет удаляться от второй точки.