Промежутки знакопостоянства - это промежутки, где функция принимает значения одного знака, т.е. те промежутки из области определения функции, где значения функции положительны или отрицательны, т.е. у > 0 и y < 0. Поэтому решим неравенства f(x) > 0 и f(x) < 0.
Т.к. функция f(x) = 2x - 5 - линейная и пересекает ось Ох в одной точке, то:
2х - 5 > 0,
2х > 5,
х > 2,5, т.е. f(x) > 0 при х ∈ (2,5; +∞),
тогда f(x) < 0 при х ∈ (-∞; 2,5).
ответ: f(x) > 0 при х ∈ (2,5; +∞), f(x) < 0 при х ∈ (-∞; 2,5).
(-∞; 2,5) и (2,5; +∞)
Объяснение:
Промежуток знакопостоянства функции - это промежуток, в котором функция сохраняет свой знак. Для нахождения промежутки знакопостоянства линейной функции f(x)=2·x-5 сначала находим нули функции:
f(x)=0 ⇔ 2·x-5=0 ⇔ 2·x = 5 ⇔ x = 2,5.
Так как других нулей у функции нет, то линейная функция f(x)=2·x-5 меняет свой знак только один раз. Поэтому промежутками знакопостоянства будут:
(-∞; 2,5) и (2,5; +∞).
При x∈(-∞; 2,5) функция отрицательна в силу:
f(0)=2·0-5= -5<0,
а при x∈(2,5; +∞) функция положительна в силу:
f(10)=2·10-5= 15>0.
13x^2+42xy+49y^2-12x+9=0
9x^2+42xy+49y^2+4x^2-12x+9=0
(3x)^2 + 2*3x*7y + (7y)^2 + (2x)^2 - 2*2x*3 + 3^2 = 0
(3x + 7y)^2 + (2x - 3)^2 = 0
Сумма 2-х квадратов = 0, когда каждый = 0
3x + 7y = 0
2x - 3 = 0
x = 3/2
3*3/2 + 7y = 0
7y = -9/2
y = - 9/14
ответ (3/2, -9/14)