По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
Для того, чтобы найти решение уравнения -15 = 3t(2 - t) мы начнем с того, что выполним открытие скобок в правой части уравнения.
Итак, откроем скобки и получим:
-15 = 3t * 2 - 3t * t;
-15 = 6t - 3t2;
3t2 - 6t - 15 = 0;
Разделим на 3 обе части уравнения и получим:
t2 - 2t - 5 = 0;
Вычислим прежде всего дискриминант уравнения:
D = b2 - 4ac = (-2)2 - 4 * 1 * (-5) = 4 + 20 = 24;
Вычислим корни уравнения следующим образом:
x1 = (-b + √D)/2a = (2 + √24)/2 * 1 = (2 + 2√6)/2 = 1 + √6;
x2 = (-b - √D)/2a = (2 - √24)/2 * 1 = (2 - 2√6)/2 = 1 - √6.