Разложим число 22 на простые множители.
Последовательность действий следующая:
1) Проверяем является ли число простым;
2) Если простое, то останавливаем процесс. Если не простое число, то делим его на простое число, начиная с наименьшего (2, 3, 5, ).
Простое число - это натуральное число, которое > 1 и имеет два натуральных делителя: 1 и само себя.
Разложим число:
22 не является простым;
Делим на 2: 22/2 = 11;
11 является простым.
ответ: 22 = 2*11, где
2 и 11 - это простые множители числа 22.
Объяснение:
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение: