В решении.
Объяснение:
а)Является ли последовательность бесконечно убывающей геометрической прогрессией если она задана формулой bn=(-4)ⁿ⁺²?
Если знаменатель |q|<1, то такая последовательность называется бесконечно убывающей геометрической прогрессией.
Значит, чтобы ответить на вопрос задания, нужно вычислить q.
b₁ = (-4)¹⁺² = (-4)³ = -64;
b₂ = (-4)²⁺² = (-4)⁴ = 256;
q = b₂/b₁
q = 256/-64
q = -4.
|q| = |-4|
|q| > 1, значит, данная прогрессия не является бесконечно убывающей геометрической прогрессией.
б)Записать бесконечную периодическую десятичную дробь 0,(12) в виде обыкновенной дроби.
Периодическая дробь — бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определенная группа цифр.
0,(12) = 0,121212121212 до бесконечности.
Чтобы производить какие-то действия с периодической дробью, её нужно округлить до сотых:
0,(12) ≈ 0,12.
0,(12)=4/33.
Надо заданные выражения привести к сопоставимому виду.
51) х² - 2х + 1 = (х - 1)²
1) не пригодится
2) 3(х - 1) = 6, х - 1 = 6/3 = 2.
Если подставить в заданное выражение (х - 1)² =2² = 4.
Найдено значение на основе 2).
Это ответ Б.
52) a - 3b.
1) 5a - 15b + 5 = 0, 5(a - 3b + 1) = 0. Только a - 3b + 1 = 0.
Отсюда a - 3b = -1.
2) 6b - 2a = 2. Разделим обе части на -2.
-3b + a = -1 или a - 3b = -1
То есть, любой вариант 1) или 2), взятый отдельно даёт решение.
ответ В.