1) x^2(x^2+16)=0 x=0 или x^2+16=0 - решений нет ответ: x=0 2)нули : x=2, x=-9, x=-12, x=0. На числовой прямой отмечаем найденные значения x, они разобьют прямую на интервалы (- бесконечность; -12), (-12,-9),(-9,0),(0,2),(2, + бесконечность). Определяем знак левой части неравенства на каждом интервале, выбирая из интервала любое число, например, возьмём -20 из первого интервала (-20-2)(9-20)(12-20)(-20)>0 и тд. ответ:(-12,-9), (0,2) 3)не понятна запись знаменателя, что является подкоренным выражением? Если весь знаменатель это корень квадратный из 8x-2x^2, то область определения состоит из всех значений x, удовлетворяющих условию 8x-2x^2>0, x^2-4x<0, x(x-4)<0, (- бесконечности, 0) и (4, + бесконечности) - искомая область определения
0 " class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=f%27%28x%29%3E0%20" title="f'(x)>0 "> при x∈(-≈;)U(;+≈) Следовательно, функция возрастает на промежутке от минус бесконечности до достигая в этой точке локального максимума, затем убывает до локального минимума в точке , затем снова возрастает. => Следовательно функция является выпуклой на интервале от минус бесконечности до 0, и вогнутой, соответственно, от 0 до плюс бесконечности График выглядит, примерно, так.Посчитай пять точек для подгонки к координатам: x∈{-2;-1;0;1;2}