Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)
х=-3 у=0
Объяснение:
Чтобы решить эту систему сложением, нужно сначала убедится, что один (и только один) из корней равен такому же корню, т.е. в одном уравнении 4х, в другом - 4х и т.д. Итак, здесь одинаковых корней нет, поэтому нам их нужном домножить на нужные числа (или число):
-4х-3у=12 *3
5у-3х=9 *4
-12х-9у=36
20у-12х=36
Теперь у нас есть одинаковые корни. Суть сложения в том, чтобы от одинаковых корней избавиться, чтобы остался только другой корень и известное нам число. Теперь вычитаем одно из другого (это тоже является сложения, не удивляйся):
получается:
-29у=0
у=0
Теперь подставим вместо у ноль в любое уравнение и спокойно решаем его:
-4х-0=12
-4х=12
х=-3