Четырёхзначное число кратно 15, следовательно делится 5. Тогда последняя цифра искомого числа либо 0, либо 5. Нуль не подходит, т.к. произведение его цифр не равно нулю. Остётся - последняя цифра числа равна 5. Тогда произведение оставшихся цифр больше 11, но меньше 13, что означает - это произведение равно 12. Ни 9, ни 8, ни 7, ни 5 не м.б. среди этих чисел, т.к. не получится произведение равное 12. Это м.б. цифра 6? Но тогда есть единственный набор цифр, произведение которых равно 12 = 1 * 2 * 6. Но, искомое число должно делиться нацело ещё и на 3, т.к. всё число делится на 15. Считаем сумму цифр числа, чтобы определить, делится число на 3 или нет. 1 + 2 + 6 +5 =14. Не делится на 3. Цифра 6 отпадает. М.б. это цифра 4? Опять единственный набор 12 = 1 * 3 * 4. И опять сумма цифр не делится на 3: 1+ 3 + 4 +5 = 12. Цифра 4 отпадает. Может быть это цифра 3? Опять единственный набор 12 = 2 * 2 * 3. А вот сумма цифр делится на 3: 2 + 2 + 3 + 5 = 12. Цифра 3 подходит, как и весь набор 2, 2, 3, 5. Остаётся выяснить в каком порядке они в искомом числе: 2235 : 15 = 149 2325 : 15 = 155 3225 : 15 = 215 Условиям задачи удовлетворяют 3 числа!
Решаем сначала уравнение вида (х^2-9)*(х-6)=0 (x-3)(x+3)(x-6)=0 корни уравнения: x=3, x=-3, x=6 рисуем прямую х и отмечаем эти точки на ней - + - + _____.______.________.___ -3 3 6 и считаешь знаки в каждом промежутке. Для этого подставляем любую точку с этого промежутка в исходное неравенство если x∈(-∞;-3) знак "-" (-4²-9)(-4-6)<0 если x∈(-3;3) знак "+" (2²-9)(2-6)>0 если x∈(3;6) знак "-" (4²-9)(4-6)<0 если x∈(6;+∞) знак "+" (7²-9)(7-6)>0
нам нужны значения, когда неравенство меньше 0, следовательно x∈(-∞;-3) ∪(3;6)
5.52=69-27.6y
27.6y=69-5,52
y=69-5.52
= 2.3
27.6