Объяснение:
Сначала найдём вероятность обратного события, а именно "обе извлечённые детали — не стандартны".
Всего нестандартных деталей 10 - 8 = 2 штуки. Соответственно, есть только один извлечь именно их.
Всего же извлечь две детали из 10 будет 10!/(2!(10-2)!) = 10!/(2!8!) = 10*9/2 = 45.
Таким образом, вероятность события "обе извлечённые детали — не стандартны" составляет 1/45.
Тогда вероятность искомого события равна 1 - 1/45 = 44/45.
ответ: вероятность того, что среди наудачу извлечённых двух деталей будет хотя бы одна стандартная, составляет 44/45.
Объяснение:
В ромбе диагонали точкой пересечения делятся пополам и взаимно перпендикулярны. Если в ромбе провести диагонали, то они разобьют ромб на 4 равных прямоугольных треугольника.
Тогда рассмотрим один из таких треугольников.
В нем известна сторона ромба- это будет гипотенуза для ∆, и один из катетов, это половина первой диагонали ромба, второй катет не известен, но он половина второй диагонали ромба.
По теореме Пифагора:
10²=(16/2) ²+х²
100=64²+х²
Х²=100-64=36; х=6 см, тогда вторая диагональ равна 6*2=12 см.
S=0,5*d1*d2=0,5*16*12=96 см²
(1 + 1)*(1 + 1/2)*(1 + 1/3)*(1 + 1/4)(1 + 1/2010)*(1 +1/2011) = 2*3/2*4/3*5/4*...*2010/2009*2011/2010*2012/2011 = замечаем что 2 3 4 ... 2011 сокращаются = 2012