М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
varvarec
varvarec
03.06.2022 16:24 •  Алгебра

( \frac{x}{3} + \frac{2}{y} ) {}^{5} Напишите биномиальные классификации это СОЧ)​

👇
Ответ:
котенок134
котенок134
03.06.2022

Объяснение:

(\frac{x}{3} +\frac{2}{y} )^5=C_5^0(\frac{x}{3})^5( \frac{2}{y} )^0+C_5^1(\frac{x}{3})^4(\frac{2}{y})^1+ C_5^2(\frac{x}{3})^3(\frac{2}{y})^2+C_5^3(\frac{x}{3})^2(\frac{2}{y})^3+C_5^4(\frac{x}{3})^1(\frac{2}{y})^4++C_5^5(\frac{x}{3})^0(\frac{2}{y})^5=\frac{5!}{(5-0)!*0!}\frac{x^5}{243}1+\frac{5!}{(5-1)!*1!}\frac{x^4}{81} \frac{2}{y}+\frac{5!}{(5-2)!*2!} \frac{x^3}{27} \frac{4}{y^2}+\frac{5!}{(5-3)!*3!}\frac{x^2}{9}\frac{8}{y^3}+\\

+\frac{5!}{(5-4)!*4!}\frac{x^1}{3} \frac{16}{y^4} +\frac{5!}{(5-5)!*5!}1\frac{32}{y^5} =\frac{x^5}{243}+\frac{10x^4}{81y} +\frac{40x^3}{27y^2}+\frac{80x^2}{9y^3}+\frac{80x}{3y^4}+\frac{32}{y^5} .

4,5(7 оценок)
Открыть все ответы
Ответ:
alexandraselivanova
alexandraselivanova
03.06.2022
1. 1) 1-(a^2+b^2)^2=(1-(a^2+b^2))•(1+(a^2+b^2))=(1-a^2-b^2)•(1+a^2+b^2)
2) 100-(3a+7y)^2=(10-(3a+7y))•(10+(3a+7y))=(10-3a-7y)•(10+3a+7y)
3) 9x^2y^4-(a-b)^2=(3xy^2-(a-b))•(3xy^2+(a-b))=(3xy^2-a+b)•(3xy^2+a-b)

2. 1) (m-2n)^2-(2p-3q)^2=((m-2n)-(2p-3q))•((m-2n)+(2p-3q))=(m-2n-2p+3q)•(m-2n+2p-3q)
2) 16(a+b)^2-9(x+y)^2=16 (a^2+2ab+b^2)-q•(x^2+3xy+y^2)=16a^2+32ab+16b^2-qx^2-2qxy-ay^2
3) (2a-3c)^2-(4b+5d)^2=((2a-3c)-(4b+5a))•((2a-3c)+(4b+5d))=(2a-3c-4b-5d)•(2a-3c+4b+5d)
4) 9(a-b)^2-4(x-y)^2=(3 (a-b)-2 (x-y))•(3 (a-b)+2 (x-y))=(3a-3b-2x+2y)•(3a-3b+2x-2y)

3. 1) a^8-b^8=(a^4-b^4)•a^4+b^4)=(a^2-b^2)•(a^2+b^2)•(a^4+b^4)=(a-b)•(a+b•(a^2+b^2)•(a^4+b^4)
2) a^6-b^6=(a^3-b^3)•(a^3+b^3)=(a-b)•a^2+ab+b^2)•(a+b)•(a^2-ab+b^2)
3) (a+b)^4-(a-b)^4=((a+b)^2-(a-b)^2)•((a+b)^2+(a-b)^2)=(a^2+2ab+b^2-(a^2-2ab+b^2))•(a^2+2ab+b^2+a^2-2ab+b^2)=(a^2+2ab+b^2-a^2+2ab-b^2)•(2a^2+2b^2)=4ab×2 (a^2+b^2)=8ab•(a^2+b^2)

4. ax^2+bx^2-bx-ax+cx^2-cx=x•(ax+bx-b-a+cx-c)
4,4(37 оценок)
Ответ:
Есть такое правило: чтобы определить, на какую цифру оканчивается число, нужно: 1)посмотреть на само число и найти последнюю цифру этого числа 2)производить операции будем с этой цифрой, в данном случае, с 3. 3)поделить степень этого числа на 4. далее самое интересное: 1)если у тебя степень делится на 4 без остатка, то это число будет оканчиваться на цифру числа в 4 степени. 2)если у тебя степень делится с остатком, то надо смотреть на остаток.если остаток 3, то число будет оканчиваться на эту же цифру, только в 3 степени этого же числа.если на 2, то число будет оканчиваться на ту же цифру, как и это число во второй степени.   следуем по правилу: число 3 оканчивается на 3.значит, будем ее рассматривать(просто бывает что 12435 надо возвести в огромную степень, везде надо смотреть на последнюю цифру) далее, делим степень на 4: 17: 4=4 и остаток 1.значит, по правилу, число 3 в 17 степени будет оканчиваться на ту же цифру, как 3 в 1 степени.а 3 в первой степени=3. следовательно, 3 в 17 степени будет оканчиваться на 3 подробнее - на -
4,6(66 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ