1) Если после переливания 12,5% содержимого первого бидона во второй их содержимое уравняется, то аналогичное будет после переливания 25% из первого бидона в третью емкость.
Следовательно, если содержимое первого бидона принять за Х, то содержимое второго бидона 0,75 * Х. Получаем уравнение
Х + 0,75 * Х = 1,75 * Х = 70 , откуда Х = 40.
Итак, в первом бидоне 40 л молока, а во втором - 30 л.
2) Если собственная скорость катера Х км/ч, то его скорость по течению
Х + 3, а против течения - Х - 3. Получаем уравнение
5 * (Х + 3) + 3 * (Х - 3) = 5 * Х + 15 + 3 * Х - 9 = 8 * Х + 6 = 126 , откуда Х = 15 , следовательно, собственная скорость катера 15 км/ч
f(x) = y = 8x - 5x^(-4) + x^(-1) - x^(4/5);
f'(x) = 8 + 20x^(-5) - x^(-2) - 4/5x^(-1/5);
2)
вначале найдем производную x^(ctgx^2):
g(x) = x^(ctgx^2);
ln(g(x))' = 1/g(x) * g'(x);
g'(x) = g(x)*(lng(x))';
(lng(x))' = (lnx^(ctgx^2))' = (ctgx^2lnx)' = 2*ctgx*(-1/sin^2x)*lnx + ctg^2x/x;
g'(x) = x^(ctg^2x) * (2 * ctgx * (-1/sin^2x) * lnx + (ctg^2x)/x);
f(x) = y = 2x^(ctgx^2)*(5x^3 + x^(1/3));
f'(x) = 2 * g'(x) * (5x^3 + x^(1/3)) + 2 * g(x) * (15x^2 + 1/3x^(-2/3));
f'(x) = 2 * x^(ctg^2x) * (2 * ctgx * (-1/sin^2x) * lnx + (ctg^2x)/x) * (5x^3 + x^(1/3)) + 2 * x^(ctg^2x) * (15x^2 + (1/3)x^(-2/3)).