М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
H3RURG
H3RURG
27.11.2020 03:15 •  Алгебра

Б) Площадь прямоугольника равна 36 см?. Длина одной из сторон прямоугольника (а) ... длине другой сторо
ны (b).
b см
2
4
6
12
а, см
...?​

👇
Открыть все ответы
Ответ:

x²+16=0

х²= -16

х= -+√16

6x²-18=0

6х²=18

х²=3

х=-+√3

Найдите корни уравнений:

x²-3x-5=11-3x

х²-16=0

х²=16

х= -+4

5x²-6=15x-6

5х²-15х=0

х(5х-15)=0

х=0    или           5х=15

                              х=3

Найдите дискриминант квадратного уравнения:

5x²-4x-1=0

D=16+20=36

x²-6x+9=0

D= 36-36=0

3x-x²+10=0

D=9+40= 49

2x+3+2x²=0

D= 4-48=-44

Сколько корней имеет уравнение:

НАПОМИНАЮ, ЧТО ЕСЛИ ДИСКРИМИНАНТ- ПОЛОЖИТЕЛЬНОЕ ЧИСЛО, ТО УРАВНЕНИЕ ИМЕЕТ 2 КОРНЯ, ЕСЛИ ОТРИЦАТЕЛЬНЫЙ, ТО НЕ ИМЕЕТ КОРНЕЙ. А ЕСЛИ РАВЕН 0, ТО ИМЕЕТ 1 КОРЕНЬ.

6x-5x=0

х=0

один корень

x²-4x+4=0

D= 16-16=0

имеет один корень

3x²-4=0

D=0+48=48

имеет 2 корня

x²-4x+5=0

D= 16-20=-4

не имеет корней

4,7(96 оценок)
Ответ:
ctalin123123
ctalin123123
27.11.2020
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел 17 и 25 – среднеарифметическое равно     21 = \frac{ 17 + 25 }{2} \ ,     и при этом 21 на 4 меньше двадцати пяти и на 4 больше семнадцати.

Когда Вася отдаёт Пете 6 монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на 6 монет меньше изначального, а у Пети на 6 монет больше изначального. А значит, вначале у Васи было на 12 = 6 + 6 монет больше, чем у Пети.

Путь у Васи вначале x монет. Тогда у Пети x - 12 монет.

В первом случае всё как раз получается правильно:

x - 6 = ( x - 12 ) + 6 \ ;

Во втором случае у Васи-II оказывается x + 9 монет, а у Пети-II будет x - 12 - 9 монет. При этом у Пети-II монет в K раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в K раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:

x + 9 = ( x - 12 - 9 ) K \ ;

x + 9 = ( x - 21 ) K \ ;

Далее это целочисленное уравнение можно решить двумя

[[[ 1-ый

K = \frac{ x + 9 }{ x - 21 } = \frac{ x - 21 + 21 + 9 }{ x - 21 } = \frac{ x - 21 + 30 }{ x - 21 } = \frac{ x - 21 }{ x - 21 } + \frac{30}{ x - 21 } = 1 + \frac{30}{ x - 21 } \ ;

K = 1 + \frac{30}{ x - 21 } \ ;

Чтобы K было целым, целой должен быть и результат деления в дроби, а чтобы K было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда     x - 21 = 1 \ ,     откуда:

x = 22 \ ; K = 31 \ ;

[[[ 2-ой

x + 9 = K x - 21 K \ ;

9 + 21 K = ( K - 1 ) x \ ;

x = \frac{ 9 + 21 K }{ K - 1 } = \frac{ 9 + 21 ( K - 1 + 1 ) }{ K - 1 } \ = \frac{ 9 + 21 ( K - 1 ) + 21 }{ K - 1 } = \frac{ 30 + 21 ( K - 1 ) }{ K - 1 } = \\\\ = \frac{30}{ K - 1 } + \frac{ 21 ( K - 1 ) }{ K - 1 } = \frac{30}{ K - 1 } + 21 \ ;

x = \frac{30}{ K - 1 } + 21 \ ;

Чтобы x было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет K - 1 = 30 \ , откуда:

K = 31 \ ; x = 22 \ ;

О т в е т : K = 31 \ .
4,6(60 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ