Пусть расстояние между А и В (s) км, скорость1 первого (х) км/час --ее нужно найти, скорость2 (2х/3) км/час --она в 3/2 раза меньше скорости1, скорость3 ((2х/3)-6) км/час --она на 6 км/час меньше скорости2 время в пути первого: (s/х) час время в пути второго: (s/(2х/3))=(3s)/(2x) час время в пути третьего: (s)/((2х/3)-6)=(3s)/(2x-18) час 10 минут = (1/6) часа 15 минут = (1/4) часа получим систему уравнений: 3s/(2х) = (s/х) + (1/6) второй приехал позже --> время больше 3s/(2х-18) = 3s/(2х) + (1/4) третий приехал позже второго
3s/(2х) = (6s+х)/(6x) 3s/(2х-18) = (6s+х)/(4x)
9sх = x(6s+х) 6sх = (x-9)(6s+х)
3sx = x² 54s+9x = x²
9x = (3x-54)s ---> s = 3x/(x-18) x² = 3x * 3x/(x-18) x-18 = 9 x = 27 (км/час) скорость первого велосипедиста s = 3*27/9 = 9 (км)
ПРОВЕРКА: скорость второго велосипедиста: 27:1.5 = 27*2/3 = 18 км/час его (второго) время в пути: 9:18 = 1/2 часа = 30 минут скорость третьего велосипедиста: 18-6 = 12 км/час его (третьего) время в пути: 9:12 = 3/4 часа = 45 минут время первого велосипедиста в пути: 9:27 = 1/3 часа = 20 минут второй приехал на 30-20=10 минут позже первого))) второй приехал на 30-45=-15 минут раньше третьего)))
а =14
Объяснение:
Задание
При каком значении а число 3 является корнем уравнения х² + ах – 51 =0?
Решение
Согласно теореме Виета:
- произведение корней приведенного квадратного уравнения равно свободному члену;
- а сумма корней - равна второму коэффициенту, взятому с противоположным знаком.
Согласно условию задачи, один из корней данного уравнения
х₁ =3; это значит, что, согласно теореме Виета:
х₁ · х₂ = - 51,
откуда х₂ = (-51) : 3 = - 17.
Зная корни, находим их сумму и берём её с противоположным знаком - это и будет а:
х₁ + х₂ = 3 - 17 = -14,
следовательно, а = - (-14) = 14.
ПРОВЕРКА
Если а = 14, то уравнение принимает вид:
х² + 14х – 51 =0.
Находим корни этого уравнения:
х₁,₂ = - 7 ±√(7²+51) = -7±√100 = -7±10;
х₁ = - 7+10 = 3 - что соответствует условию задачи;
х₂ = - 7-10 = -17- что соответствует выполненному нами расчету.
Всё сходится - значит, не ошиблись.
ответ: при а =14.
ПРИМЕЧАНИЕ
Тот же ответ можно получить, если в первоначальное уравнение подставить вместо х его значение 3 и решить полученное уравнение относительно а.