ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .
Для вычисления подобных пределов удобно использовать правило Лопиталя.
Кк – это аббревиатура, имеющая два значения, либо «ok, ok», либо миллион
или ты имеешь ввиду
Объяснение:
Кики — уменьшительная форма имени Кристина:
Кики с Монпарнаса (1901—1953) — французская певица, актриса, художница, натурщица.
Ки́ки — девочка, юная ведьма, занимающаяся курьерской доставкой в полете на метле, главная героиня серии детских книг Эйко Кадоно, мультфильма Хаяо Миядзаки «Ведьмина служба доставки» и одноименного художественного фильма.
Ки́ки — пушистый игрушечный заяц, принадлежащий девочке Джесси из мультсериала «Студенты».
Кики́ — гигантская черепаха-долгожитель.
Кики, Габи (род. 1995) — камерунский футболист.
1.
a) c * c^15 : (c^7)^2= c^16/с^14= c^2
б) -x^3y^2+ 2x^3y^2 - 3x^3y^2= x^3y^2(-1+2-3)
в) (2ab^3)^4 : (2a^2b)^2=2ab^12/2a^4b^2=a^-3*b^10
г)(n^8)^4 * n : (n^3)^11= n^32*n / n^33=n^33/n^33=n
2. 10^9 : (2^3)^3 * (5^3)^2=5^3
1) 10^9:2^9=5^9*2^9/2^9=5^9 (сократим 2^9)
2)5^9:5^6=5^3 (вычтем)
3. (3/4)^8 * (4/3)^7 > (-0.75)^0
(3/4)^8*(4/3)^7=3^7*4^6
(-0.75)^0=1
5. (25x^3)^2 * (5x^5)^3 : (125x^8)^2 = 25x^6*5x^15/125x^16=125x^21/125x^16=125x^5
4 напишу позже если решу, в сообщении