М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Асамия
Асамия
07.10.2020 18:50 •  Алгебра

11.401-23.17+4.401-10.83 по действиям, не понимаю просто как

👇
Ответ:
azizovaezoz
azizovaezoz
07.10.2020
1)-11.401-23.17=-34.571
2)-34.571+4.401=-30.17
3)-30.17-10.83=-41
4,6(20 оценок)
Открыть все ответы
Ответ:
polinabaysha
polinabaysha
07.10.2020

1)

ОДЗ:   x^2-x-6\geq0   ⇒      (x+2)(x-3)\geq 0   ⇒  x \in (-\infty; -2] \cup [3;+\infty)

(2^{x}-2)\cdot \sqrt{x^2-x-6} \geq 0      ⇔

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0    или   (2^{x}-2)\cdot \sqrt{x^2-x-6} 0

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0      ⇒     2^{x}-2=0   или   \sqrt{x^2-x-6} =0   ⇒

x=1   или    x=-2     или    x=3

x=1       не входит в ОДЗ

два корня    x=-2     или    x=3

(2^{x}-2)\cdot \sqrt{x^2-x-6} 0     при    x \in (-\infty; -2] \cup [3;+\infty)

\sqrt{x^2-x-6} 0,   тогда     2^{x}-20  ⇒     2^{x}2   ⇒     x 1

C учетом x \in (-\infty; -2] \cup [3;+\infty)  получаем ответ:  

\{-2\} \cup [3;+\infty)

2)

ОДЗ:   x^2-2x-8\geq0   ⇒      (x+2)(x-4)\geq 0   ⇒  x \in (-\infty; -2] \cup [4;+\infty)

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} \leq 0      ⇔

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0    или   (3^{x-2}-1)\cdot \sqrt{x^2-2x-6}

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0      ⇒     3^{x-2}-1=0   или   \sqrt{x^2-2x-8} =0   ⇒

x=2   или    x=-2     или    x=4

x=2       не входит в ОДЗ

два корня    x=-2     или    x=4

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8}     при    x \in (-\infty; -2] \cup [4;+\infty)

\sqrt{x^2-2x-8} 0,   тогда     3^{x-2}-1  ⇒     3^{x-2}   ⇒     x-2

C учетом      x \in (-\infty; -2] \cup [4;+\infty)  получаем ответ:  

(-\infty;-2]\cup \{2\}

3)

\sqrt{6\cdot 3^{x}-2} 3^{x}+1

Так как     3^{x}+1 0         при любых х, возводим данное неравенство в квадрат:

6\cdot 3^{x}-2(3^{x})^2+2\cdot 3^{x}+1

(3^{x})^2-4\cdot 3^{x}+3

D=16-12=4

(3^{x}-1)(3^{x}-3)

1< 3^{x}

Показательная функция с основанием 3 возрастает

0 < x < 1

О т в е т. (0;1)

4)

\sqrt{2\cdot 5^{x+1}-1} 5^{x}+2

Так как     5^{x}+2 0         при любых х, возводим данное неравенство в квадрат:

2\cdot 5^{x+1}-1(5^{x})^2+4\cdot 5^{x}+4

5^{x+1}=5\cdot 5^{x}

(5^{x})^2-6\cdot 5^{x}+5

D=36-20=16

(5^{x}-1)(5^{x}-5)

1< 5^{x}

Показательная функция с основанием 5 возрастает

0 < x < 1

О т в е т. (0;1)

         

4,4(40 оценок)
Ответ:
F (x) =  - x² -2x +8  ;
* * * * *    f(x) = 9 - (x+1)²     * * * * *   =(3² - (x+1)² =(3 -x -1)(3+x+1) = - (x+4)(x -2)   * * * * *
1.  ООФ : ( - ∞ ; ∞) .
2. Функция не четной и не нечетной  * * * * * и не периодической  * * * * * .
3 Точки пересечения функции с координатными осями :
а) с  осью  y : x =0⇒ y = 8  ; A(0 ;8)      * * * * *  -0² -2*0 +8 =8  * * * * *
б) с  осью  x :  y =0 ⇒  - x² -2x +8 =0 ⇔ x² +2x -8 =0 ⇒x₁= -1 - 3 = - 4 ; x₂ = -1 +3 =2 .
B(-4; 0) и C(2;0).
* * * * * D/4 =  (2/2)² -(-8) = 9 =3²  * * * * *
4. Критические точки функции.
* * * * *    значения аргумента (x)  при которых производная =0 или не существует)    * * * * *
 f ' (x) = ( - x² -2x +8 )' = - (x²)' - (2x )'  +(8 )' =  -2* x - 2(x )' + 0 =  -2x - 2  = -2(x+1);
  f ' (x) = 0 ⇒ x = -1  (одна критическая  точка) .
5. Промежутки монотонности  :
а) возрастания : 
f ' (x) > 0 ⇔  -2(x+1) > 0 ⇔  2(x+1) < 0 ⇔ x < -1 иначе  x∈( -∞; -1).
б) убывания :
f ' (x) < 0 ⇔  -2(x+1) <  0 ⇔  2(x+1) > 0 иначе x∈ ( 1 ;∞ ).
6. Точки экстремума:
* * * * *   производная меняет знак  * * * * *
x =  - 1.    
7. Максимальное и минимальное значение функции :
Единственная точка экстремума  x =  - 1 является  точкой максимума ,
т.к.  производная меняет знак с минуса на  плюс .
max(y) = - (-1)² -2(-1) +8 = 9.
8. промежутки выгнутости и выпуклости кривой; найти точки перегиба.
* * * * *  f ' ' (x)  =0    * * * * *
 f ' ' (x) =( f'(x))' =( -2x -2) '  = -2  < 0 ⇒ выпуклая  в ООФ  здесь R  by  (-∞; ∞)
не имеет точки перегиба (точки при которых  f ' ' (x) = 0 ) .

P.S.   y = -x² -2x +8  = 9 -(x+1)²   .
График  этой функции парабола вершина в точке  M(- 1; 9) ,  ветви направлены вниз , что указано во второй строке решения .
 Эту  функцию предлагали наверно для "тренировки".
4,6(98 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ