Перед нами квадратное неравенство 2х² + х -6 ≤ 0.
Для начала решим квадратное уравнение 2х² + х -6
Решаем квадратное уравнение
x 1 = -2
x 2 = 1.5
Интервалы знакопостоянства
Определяем интервалы, на которых функция не меняет знак - интервалы знакопостоянства.
( -∞ , -2) ( -2 , 1.5) ( 1.5 , +∞)
Определяем, какой знак принимает функция на каждом интервале.
( -∞ , -2) плюс
( -2 , 1.5) минус
( 1.5 , +∞) плюс
Записываем интервалы, удовлетворяющие неравенству.
( -2 , 1.5)
Проверяем входят ли концы интервалов в ответ.
[-2 , 1.5]
ФИНАЛЬНЫЙ ОТВЕТ:
x принадлежит интервалу [-2 , 1.5]
А нам в ответ нужно записать ТОЛЬКО ЦЕЛЫЕ ЧИСЛА
ответ: -2; -1; 0; 1.
x^2-x^4
x^2(1-x^2)=0
x^2=0 или 1-x^2 = 0
x=0 -x^2=-1 | x(-1)
x^2 = 1
x1= 1 ; x2 = -1
ОТвет: 1;-1;0
y^3-y
y^3-y = (1-y)*y*(y+1)
y=0 или 1-y=0 или y+1=0
y=1 y=-1
ответ: 0;1;-1
y^3-y^5
y^3-y^5= -(y-1)*y^3*(y+1)
y^3 =0 или y-1=0 или y+1 = 0
y=0 y=1 y=-1
ответ: 0;1;-1
81x-x^3
x(81-x^2)=0
x=0 или 81-x^2
-x^2=-81 | x(-1)
x^2=81
x1=9; x2 = -9
ОТвет: 0;9;-9
mx^2-my^2 что с этим делать?
сделал что смог)
упрощение: m*(x^2-y^2)
разложение на множетели: (-m)*(y-x)*(y+x)