Пусть за х(часов)-первая выполнит,а х+5(часов) -выполнит вторая машина. 1/х-производительность первой машины в 1час,а 1/(х+5) -производительность второй.
а 1/6 ч общая производительность за 1час
Составим уравнение: 1/х+1/(х+5)=1/6 - приводим к общему знаменателю- 6*х*(х+5)6х+6х+30=х²+5х х²-7х-30=0
Дискриминант больше 0, уравнение имеет 2 корня: x₁=(13+7)/2=20/2=10; x₂=((-13+7)/2=-6/2=-3 - этот ответ не подходит,т.к. время не может быть отрицательное. ТОГДА
первая снегоуборочная машина в отдельности выполнить всю работы за 10часов
1 этап составление математической модели Пусть первоначальная цена куртки равна х руб, тогда цена куртки после снижения её на 20% составила (1-0,2)*х=0,8х руб, а после дальнейшего повышения на 10% составила 0,8х*(1+0,1)=0,8х*1,1=0,88х руб. По условию, разница между первоначальной ценой и последней составила 180 руб. Составляем уравнение: х - 0,88х =180
2 этап работа с математической моделью (решение уравнения) 0,12х =180 х=180:0,12 х=1500
3 этап ответ на вопрос задачи Получили х=1500 руб. - составила первоначальная цена куртки
1/х-производительность первой машины в 1час,а 1/(х+5) -производительность второй.
а 1/6 ч общая производительность за 1час
Составим уравнение:
1/х+1/(х+5)=1/6 - приводим к общему знаменателю-
6*х*(х+5)6х+6х+30=х²+5х
х²-7х-30=0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-7)²-4*1*(-30)=49-(-120)=49+120=√169=13;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(13+7)/2=20/2=10;
x₂=((-13+7)/2=-6/2=-3 - этот ответ не подходит,т.к. время не может быть отрицательное.
ТОГДА
первая снегоуборочная машина в отдельности выполнить всю работы за 10часов
а вторая 10+5=за 15часов.